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Abstract-This paper presents a block-diagonalization method to solve stitrness equations of iso­
twpic symmetric plates. By means of a suitable "local" coordinate transformation. chosen based
on group theory. the stiffness matri~ is decomposed into a block-diagonal form. The stitrness
equation in the local coordinate is solved block by block. thus realizing numerical efficiency ,lOd
greatly reducing the requisite amount ofcomputer memory. The elliciem:y has been further upgraded
with the aid of the concept of augmented orbit. This meth<ld is ,tpplied to a square is<ltn>pic plale
subject to "asymmetric' loads to show its usefulness.

I. INTRODUC"TION

The group-theoretic method has emerged as a systematic means to e:<ploit geometric
symmetry. Zlokovic (1989) has applied it to symmetric structures subjcctcd to asym­
metric loads. Bossavit (1986) exploited the symmetry lor dom;.tins of partial dillcrcntial
equations. 1-lcaley (1988) employed it in obtaining equilibrium paths of bifurcation buckling
problem of structures with regular-polygonal symmctry; it was also used for large eigen­
v;.t1ue problems for symmetric structurcs in Healey and Treacy (1991). Dinkevich (1984.
1991) offered a series of complete studies on block diagonalization. Murota and Ikcda
(1991) and Ikeda and Murata (1991) used it/or bifurcation-tracing analysis of structures
with regular-polygonal symm~try.with an emphasis on a dual view point ofgroup symmetry
and sparsity.

All these group-theoretic studies an~ bas~d on a mathematical principle-isotypic
decomposition-that the solution space for symmetric structures is to be: partitioned into
a series of orthogonal subspaces [sec. e.g. Serre (1977) and Fujii and Y"maguti (1980)J.
This principle guarantees the existence of a transformation matrix II that can put elastic
stiffness matrix K of symmetric structures into a block-diagonal form K. that is.

o

(I)

o

Since block-diagonal matrices thus derived arc smaller in size compared with the original
matrix. this method can save computer memory. At the same time. the cost for sweeping
out the matrix is greatly reduced. at the expense of the increase in the cost for matrix
multiplication in eqn (I). A procedure to efficiently perform this matrix multiplication
compatibly with the matrix finite element method must be developed to put the method
fully into practical usc.

A typical procedure to reduce this multiplication cost is to exploit the geometric
symmetry. For this purpose Bosavit (1986) presented the concept of the "symmetry cell" ;
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Fig 1 Geometm; symmetry of a square plate

Dinkevich (1991) employed the '"fundamental primitive" : and Murata and Ikeda (1991)
used the '"orbit" for three-dimensional (truss) structures. The objective of this paper is to

augment the techniques to further and fully exploit geometric symmetry. For this purpose.
the concept of '"augmented" orbit is introduced: the formation of H and the mUltiplication
ofeqn (I) are performed systematically to enhance numerical etliciency. The present method
i~ applied to small-di~placement analy~i~ of isotropic symmetric plates.

2. THEORY

In thi~ ~ection the group-theoretic method for the hlock diagonali/ation of thc eb~tlc

~titrne~s lllatri\ of regular-polygonal (II-gona!) pbtes i~ presented. a~ a recapitulation of
previous papcrs. such as Dinkevich (1\)91) and MurtHa and Ikeda (1\)91).

The geometric symmetry ofa regular II-gonal plate in the X}'-pbne can be labeled by
the dihcdral group'"

D" = :r'.s,' Ik = 0.,., .11-1:. (2)

of degree II. where the braces {.: denote the dements of the relevant group: the clement ,I'

stands for the rclkction with respect to the ,'(Z-plane. and " (k = O. ' ... II - I) for the
counter-clockwise rotations around the Z-axis at an angle of2rrk!n radians: and the multiple
denotes that the transformations are performed from the right to the left in sequence.

For a square plate (n = 4), for example"k (k = O. 1,2,3) express the counter-clockwise
rotations of krr/2 radians around the Z-axis: and .1'1 (k = O. I, 2, 3) express the reRections
with respect to vertical planes intersecting the XY-plane in the X-. S-, Y- and T-axes.
respectively (see Fig. I).

[n the application to the problems of structural engineering, we will extend the notion
of group symmetry to the symmetries of (I) material property. (2) plate thickness. (3)
finite dement meshes;. and (4) the boundary conditions. in addition to the geometric
confIguration. In the remainder of this paper. a plate is called D,,-invariant for short if it is
D,,-invariant with respect to all those aspects,

The geometric configurations of the deformed state of a D,,-invariant plate can be
systematically labeled and categorized by the subgroups of D". expressed as:

f):" = :,'" "', .1" I· '" '" Ik = O. I., ' , . //I - I :.

c" = :,'" '" Ik = O. I. ' ' , ./1/ - 1:.

where //I divides nand D,:, :::: n",. Subgroups n:" denote rel1ection symmetric modes with
respect to fIl vertical planes: n:" with dit1'erent .i express the same symmetry with the same
number of rel1ection planes but stand for di trerent geometric configurations. c'n are rotation

t In the Schoenl1lcs notatilln this group is Jcnotcd as Co,, whcrca' n" mcans another group in which s represents
the half·rotation around the X·axis

: The impllrtance of symmetry in tinite-element meshes in Jescrihing overall symmetry has heen pointcd out
hy Fujii and Yamaguti (19XO)
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symmetric modes with respect to m rotations of 2krr:m radians (k = 0..... m-I); C, IS

the asymmetric mode.

Remark
For a D~-invariant square plate in Fig. I. D~ corresponds to a rectangular deformation

mode and D~ to a diamond-shaped one. Such a difference is attributable to the difference
in the physical meaning of the reflection planes. Likewise D;,," and D;,,"-' (k = I..... n/2m)
denote physically different modes for n/m even (cf. Ikeda et al.. 1991). The symbol D/.,.
accordingly. is used to identify physically different modes. although it is customary to use
D," to represent D,~.

Let us denote a system of discrctized stiffness equations of a plate by

F(f.u) == f-Ku = O. (3)

where f is a loading pattern vector; u denotes a nodal displacement vector; K is an elastic
stiffness matrix. The symmetry of F can be represented by the condition of equivariance
with respect to Dn :

T(g)F(f.u) = F(T(q)f. T(q)u). forallgEDn. (4)

where T( g) is a unitary matri.x expressing the transformation associated with an clement
g of Dw Then it is easy to show the coml1lutability of K and T( q)

T(g)K = K"["(g). for all .liE DOl" (5)

The condition (4) ofequivariance indicates that the tr.lnsformation T(g) on the independent
variables f and II will result in rearranging the set of equations F through the same trans­
formation 1'(g). Equation (3) for a Dn-invariant plate usually enjoys D,,-equivariance so
that ont: needs not to prove it by showing eqn (4) or (5) [to be precise. the equivariance
can be assessed by showing the symmetry law by Dinkevich (1991)].

Symmetric systems have the characteristic that the space of the solution II of the
eq uilibrium equation (3) is to be decumposed into a series of mutually orthogonal subspaces
by so-called isotypic (standard) decomposition [sec. e.g. Serre (1977)]. For a D,,-invariant
plate. or a D,,-equivariant system (3) to be more precise. this decomposition guarantees the
existel1l:e ofa transformation matrix [sec Ikeda and Murota (1991) and Murata and Ikeda
(1991)] :

(6)

which is independent of particular points and puts the stiffness matrix K into a block­
diagonal form K:

o

(7)

o
where
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(8)

{
R, = -l.

R, = 2.

Rd = n.2 - I for n even,

Rd = (n - 1) 2 for n odd.

Here, (-) T denotes the transposet: R, is equal to the number of sq uare diagonal blocks K'I
(j = l. ... , R,) that are not repeated, and Rd to the number of Rdl (j = 1. ... , Rd ) that are
repeated twice. In group theory R, denotes the number of one-dimensional irreducible
representations. and Rd that of two-dimensional ones. For brevity we often refer to a
submatrix of eqn (6) as HI', where II = sj. dj or dj -.

Each irreducible representation II of D" is defined as

where T" is the irreducible representation matrix for p. Based on Murota and Ikeda (1991),
we have

I(sl) = D,,: I(s2) = C: I(s]) = D" ~: I(s4) = D,; ~:

I(dj) = C~"dll"I' j= 1..... Rd , (9)

wht:re gcd(j. II) is tht: greatt:st common divisor of j and II.

"Vt: can t:bboratcly c1Hlost: Ildl to be symlm:tric with rt:spt:ct to D~cd'l.", irrt:spective of
the parity of IIgcd(j.II), and 11'1 1 to f)~<:~I;'I'';I~<:dll'dl for lI/gcd(J. n) even. Such a choice.
combim:d with tht: cont:ept of "allgll1t:nted orbit" in St:dion 4.2, will achieve numerical
ellicit:m:y.

Then consider a local coordinate transformation

1<, Hd

U = flw ==: I.JI"w" = I 1I" w'l+ I (lldIWdJ+HdJ-'WdJ'),

JI ; ..... I J- I

with a local coordinate variable

(10)

By means of the transformation (10), the still'ness equation (3) can be partitioned into a
number of distinct equations for each block

(I I)

( 12)

Substitution of the solution Wi' of eqns (II) and (12) into eqn (10) leads to the solution u
of the original eq uation

( 13)

as a superposition of the solutions for each block.

t It is sutlice to usc the transpose I )r here. while in a more general conte.t the Hermitian conjugate (-)" is used.



Block-dlagonalization analysis of symm<:tric plat<:s

3. FORMULATION OF TRANSFORMATIO:-': MATRIX

2783

In this section we present a systematic method to formulate a transformation matix H
for a Do-invariant plate based on the concept oforbit [see Golubitsky and Schaeffer (1985)].

A set of nodal points for a Do-invariant plate as a whole is also D.-invariant. This
whole set of nodal points can be partitioned into a series of Do-invariant subsets of points.
which are called "orbits" in mathematical terminology. Elements I and sl (k = O..... n - I)
of Do transform a nodal point x to points Ix and (sl)x. respectively. where x expresses its
location vector. In this manner one can define an orbit consisting of a set of points:

which can be transformed to one another and remain unchanged as a whole by the geometric
transformation by the elements of Do. As shown in Fig. 2. the following four types of orbits
exist: (I) Center type. (2) n-gon type I. (3) n-gon type II. and (4) 2n-gon type. In particular.
for a square plate (n = 4). the n-gon type is called the square one. and the 2n-gon type the
octagonal one. Figure .3 displays an example of orbital decomposition of a meshed square
plate. which is made up of one center type. two square type I. two square type II. and one
octagonal type. Just as the finite element method expresses a structure as an assemblage of
clements. a meshed plate is expressed as an assemblage of orbits.

The basic strategy which we will employ is to formulate each column vector of H orbit
by orbit. Such a definition not only makes its formulation simpler but also makes the
resulting H matrix sparser. since only the components associated with the orbit arc nonzero.
The orbital decomposition presented in this paper is numerically more etlicient than that
by Ziokovic (19X9) in thilt the former decomposes a plate into a greater number of orbits
and makes 1/ sparser.

For 11 = 4. for eXiul1plc. we can choose the deformation modes shown in Fig. 4 for
each Mbit corresponding to each JI [sec M urota and Ikeda (1991) or Ikeda and M urota
(1991)j. Here the arrows denote the direction of the deformation vector: the solid lines
express deformed states and the dashed lines the initial state. Some of these deformation
modes enjoy the antisymmetry with respect to some rotations and reflections. For example.
the modes for s2 have no reflection symmetries. However. they ilre antisYll1metric with
respect to the four reflections sl (k = 0, 1,2.3) in that they reverse the signs of deformations
but retain their magnillldes unchanged. Further the modes for d I - have been elaborately
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chosen so as to enjoy invariance with respect to sr' and also antisymmetry with respect to
sand r'. Such antisymmetry will he exploited in the following seetion to enhance the
numerical dliciency of the present method.

4. EFFICIENT COMPUTATION 01: LOCAL STIFFNESS MATRIX

In this method we haw greatly reduced the cost for sweeping out by replacing the
analysis for Kin eqn (3) by that of K" of eqn (I J) with smallt.:r sizes, at the expense of the

sl s'2 53 54 dl dl-
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Fig. 4. Ddormalion mOlks for caeh orhlt (n = 4). Dotted-dash IIncs: planes of r<:lk,tion symmetry
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additional cost for the matrix multiplication in eqn (8) to compute KiA. In order to further
enhance its efficiency this additional cost is reduced here through the procedures listed
below. details of which will be given in the following subsections:

(I) Because only the components wiA with nonzero (HiA) Tf will contribute to the final
solution of eqn (13). only KiA with nonzero (HI') Tf need to be computed and sweeped out.

(2) Equation (8) is used to compute KiA. instead of eqn (7). so as to reduce the size of
matrices and in turn to reduce the multiplication cost.

(3) The matrix multiplication of eqn (8) is to be performed for each element and then
to be superposed for the whole plate so as to reduce the size of matrices.

(4) The matrix multiplication for all elements needs not to be performed if the geo­
metric symmetry (Dn-invariance) of the plate is to be implemented.

(5) For twice repeated matrices f.:d l in egn (7). only one of them should be computed
and be sweeped out.

(6) Because f.:" are symmetric matrices. only their upper triangular parts are to be
computed.

4.1. Transformation for each element
The column of H" is associated with the variable Wi'. and its row with global variable

u. Remembering that the components of wI' correspond to the deformation modes of orbits,
one can decompose Wi' into orbital components:

( 14)

where No == No<!l) is the number of orbits; and w:' is the ith orbit (i == I, .... No). Likewise
u is decomposed into nodal components:

r r ru == « u d , .... (uv,J ) , ( 15)

where N,. is the number of nodal points; and u, is the ith point (i == I ..... NI')'
To be consistent with these decomposed variables of e4ns (14) and (15), the submatrix

fll', the block-diagonal stiffness matrices K", and the stiffness matrix K are partitioned into
block matrices as below.

II" == (H Ii Ii == I, .... N,.; .i == I .... , No)

(

HI'1,1

== f1;~"'1
H';"V") ,

H":"1" •.'11 0

KiA == (KI;li,j N lI ),

K == (K"li,j = I, , NI')'

Let the plate be made up of No clements, and the eth clement (e = I, .... No) consists
of AI nodal points with node numbers (p, Ii == I, ... , M), and denote by

(q, == q,(P,) Ii = I, ... , AI)

the orbit number of each point. We partition the eth clement stiffness matrix, say
K' (e == I, ... , No). into block matrices as

Aft" == (K;,p, Ii,j == 1, ... , ,"'f).

Then the multiplication of eqn (8) for the whole structure can be replaced by the
assemblage of the multiplications for elements

SAS 29:22-G
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,
\( \1

K" = 1:: )' )' K<'" () ()
" '--' t/i<,<!/"'. N/~

t'= I k-I i= I

(16)

where ()'4. and ()N/ denote Kronecker's delta: and

(17)

It is suffice to compute K:; with i ~ j in egn (16), since K" is a symmetric matrix. Because
the size of matrices in the right-hand side of egn (t 7) is much smaller than that in eqn (8),
the cost for matrix multiplication has been greatly reduced.

4.2. A lI.lJ/IICfllci/ orhil ([/110m/ c!c/II('fll.l'

The geometric symmetry of a IJ,,-invariant plate IS exploited here by means of the
concept of "augmented" orhit among elements. To he consistent with the four types of
orhits among "points", the set of clements of such a plate can be decomposed with the usc
of four types of IJ,,-invariant orhits among dements shown in Fig. 5 for fl = 4: (I) center
type. (2) fl-gon (square) type I. (3) fl-gon (square) type II, and (4) 2n-gon (octagonal) type.
It is to he noted that the ddinition of the orhit varies \\ith the group under which the orbit
is invariant. For the subgroups G == I( II) of [)". the four types of Dn-invariant orbits arc
decomposed into different kinds of orhits. An example for C; = D I is shown in Fig. 6(a),
where the clements ascribed with the same symbol belong to the same orbit.

Say two elements C and c" belong to the same orbit among "elements" under the
action of a subgroup G. and fI, and fit (respectively. Pi and pi) are the points on each of
these two elements. respectively. belonging to the same orbit among "points" under the
same group action G. Then there exists an orthogonal transformation T(.lJ) for an element
9 of the subgroup G such that

CeHter typt'

I
-----$-----

I

SqllMe type I

-----t-----­
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Sqll"'" type II

I
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-~--+--~-
I
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[!]
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~~
-~_._~ ---_.-

~~

(b)

I

[!]
I

-~--+--@-

[!]
i

~~
-----. ~--_.-
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Fig. 6. (al D ,-invariant orbits among e!<:mcnts. Ih) D ,-invan.tnt augmentcd orbits among c1cmcnts.
D{)tled-Jash lines: plancs of retle<:tion symmetry: solid line'S' pl.mcs of rcflcction antisymmctry.
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T(g)H~p = H~.p" '7 = k or I, geG.
"" ..." "
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( 18)

(19)

where K~;p; is the submatrix for the element stiffness matrix for the element e* associated
with the two points p: and p~

With the use of eqns (18) and (19), the component K~:q, of eqn (16) can be expressed as:

== (H~.p,> T T(g)TT(g)K;.PI T(g) T T( g)H~,PI

== [T(g)H~.p.JT [T(gf K;.p{T(gW[T(g)H~{p,J

(20)

by [T(g)]r == [T(g)]-'. Equation (20) indicates that the elements belonging to the same
orbit under the action of G have the same tributary element stiffness for G.

Here. we extend the concept of orbit. Remember that the base vectors of Fig. 4 arc
selected in such a manner that they often enjoy antisymmetry with respect to the group
action. that is.

(21 )

Then it is straight forward to show that eqn (20) holds for this case as well. We call a set
of points which satisfy either eqn (18) or (21) an "augmented orbit" that is invariant up to
the sign. Since the clements belonging to the same augmented orbit have the same tributary
stiffness. the stiffness for one representative element among these elements should be
evalu.lted and then multiplied by the number of clements among the augmented orbit to
arrive at the stiffness for the whole orbit.

For example. for n = 4, Table I lists this number for each orbit; and Fig. 6(b) displays
the decomposition of the four types of D4-invariant orbits into D,-invariant augmented
orbits. As can be seen, these augmented orbits consist of a greater number of ekments than
do customary orbits. The use of the augmented orbits will enhance the numerical efficiency
of the present method.

5. EXAMPLES

5.1. One-element square plate
As a simple example. we consider a D 4-invariant square plate with a uniform thickness

J. and of isotropic material property with constant Young's modulus E and Poisson's ratio v.

Table I. Number of clements belonging 10 augmented
orbit among clements for n = 4

11
Type of orbit s l. 52. 53. s4 dl dl-

Center I I I
Square type I 4 4 2
Square type " 4 2 4
Octagonal 8 4 4
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Fig. 7. An isotropic. four-node. square plate element.

We simulate this plate by a four-node finite element with eight degrees of freedom shown
in Fig. 7.

By eqn (5) an element stiffness matrix l\" of the D,-invariant plate must commute with
the transformation matrices T(f') and T(sf') (k = O. I. 2, 3) for all elements of D,. For
example, T(r) and T(s) read:

-I

-I

T(r) =

T(s) =

-I

-I

-I

-- I

-I

-I

This condition (5) restricts the form of l\" as follows:

c,
C C
Cj -C) C,
C, C\ C C- ,

K'= C, -C" C\ -C,

-C, C 1 C, C j

C\ C) C1 C"
-C, C j C" C1 C,

Symmetric

(22)

where (C,I i = 1, .... 7) are constants.
For example. an isotropic element stifTness matrix for a Serendipity square clement

with four nodes is of the form of eqn (22) with



where
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Ct = 2(3-v), C~ = -(3-v), C3 = ~(l-3v),

C~=c6=~(I+\'). cs=-(3+v), c7=2v.

2789

This element stiffness matrix, therefore, commutes with T(g) and remains invariant under
T(g).

The transformation matrix H~ (Jl = S t, s2, s3, s4, d I, or d I -) of eqn (6) for this
element, made up of an orbit of sq uare type I, can be given by the deformation patterns of
this orbit shown in Fig. 4, that is.

-fi/4 fi/4 -fi/4 -fi/4

-fi/4 -fi/4 fi/4 -fi/4

-fi/4 -fi/4 -fi/4 fi/4

fl" =
fi/4

II'~ = -)2/4
If') =

-fi/4
H'4 =

-fi/4

./2/4 -fi/4 ./2/4 ./2/4
,

)2/4 J2/4 -./2/4 ./2/4

./2/4 )2/4 fi/4 -fi/4

-)2/4 )2/4 J2/4 J2/4

1/2 0 0 -1/2

0 -1/2 1/2 0

1/2 0 0 1/2

Holt =
0 1/2 fr t - = 1/2 0

1/2 0
,

0 -1/2

0 -1/2 1/2 0

1/2 0 0 1/2

0 1/2 1/2 0

Then K' can be put into a block-diagonal form with the square blocks of eqn (8) :

with

~,I EtK =-­
I-v'

~) Et
K' =-­

I +v'

Roll = Et(~=-~l (0 0).
6(I-v') 0 I

The three zero diagonals of this matrix are associated with the rigid body displacements of
the plate.
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5.2. Square plate with N x N meshes
We consider a D 4-invariant squan: platd of a uniform thickness and isotropic material

property with N x N uniform meshes supported at the four corners with point bearing. This
plate is subject to an asymmetric load, for which all external force vectors (H") tf are all
nonzero. The element stiffness matrix is given by the Serendipity square element with four
nodes. The stiffness matrix K transformed by eqn (7) is partitioned into six diagonal blocks.

For N = 6 the deformation modes for the solutions f1"w" of egn (13) for blocks are
shown in Fig. ~(a). where the size of axis denotes the scale for each deformation mode.
Then these modes are superposed to arrive at the final solution u shown in Fig. 8(b), which
is identical with that obtained directly from eqn (3).

In order to demonstrate the numerical efficiency of the present method, we compare
it with the direct (conventional) method [similar comparison was done by Dinkevich
(1991)]. The revised Cholcsky methodt is used to sweep out stiffness matrices. The cost to
sweep out a banded matrix of size At is given by

(23)

in terms of the numbcr of arithmctic operations, where B is a half band width. This cost
for the direct method is evaluated to

t The finite element solution for thIS plate strongly depends on mesh and would diverge for infinitesimally small
mesh widths.

: Although the Cholesky method is employed here. it docs not necessarily mean that this method is superior to
many other alternatives. such as the one-way dissection method oy George and Liu (1981) and the block
elimination method oy DinkeVich (19%).
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Table 2. Number of the orbits among elements for the square plate

2791

Parity of IV
Odd
Even

Center
1
o

Type of orbit
Square type I Square type II

(N-I) 2 (,"'-1l.2
IV;2 0

Octagonal
(S-I)(N-3l8

\N:-2S) 8

Table 3. Computing cost for matrix multiplication (17) for each element

Ii
sI. s2. s3. sol

dl

Center
72

152

Type of orbit
Square type I Square type II

80or126 76 or 168
168 or 300 184 or 400

Octagonal
110. 138. 168 or 200
270. 34B. 434 or 52B

(24)

and for the present method to

(25)

Matrix multiplication cost for the present method can be evaluated as below. A set of
N x N elements of the plate is decomposed into four types of orbits among elements. With
the use of the number of each orbit listed in Table 2 and the cost for m'ltrix multiplication
(17) for each element in Table 3. the cost for the whole plate is evaluated to 232N~. which
is far smaller in order than the cost (24) or (25) for sweep out. The overall cost by the
present method, which is the sum of eqn (25) and 232N~, is given by

(26)

which is approximatdy 3/8 of the cost (24) for the direct method for large N.
Figure 9 depicts for various numbers of division N the numerical etliciency of the

present method relative to the direct method. For the present method the procedures
presented in the previous section have all been employed to enhance its numerical etftciency.
The solid lines denote the computing time by the present method with and without parallel
computation; the dashed one expresses that by the: dire:ct method; and the computing time
is normalized regarding that of the direct method for N = 9. The computing time for N = 9
is reduced for the present method more than 20% compared with the direct method. This
reduction. however. is smaller than an analytically predicted reduction of 60% by eqns (14)
and (26) for N = 9. Such smaller reduction is attributable to additional cost for the block­
diagonalization analysis in the computer program. Nonetheless, such additional cost will
be of the order of (N 2

), and is expected to be reduced for large N. With the aid of five
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Fig. 9. Numcrical cfficicm:y of thc present mcthod relative to thc dircct onc.
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parallel units the computing time has been further reduced by more than 65°;;,. The time
will be further reduced when the computation for each block is performed by parallel
machines with many parallel units.

A more important feature of the present method is its 100\ier demand on the computer
memory. If the computation for each block is performed in sequence. for block matrices
K'l only the storage for one with the greatest size needs to be reserved. Further. the storage
for H" can be almost nullified by directly computing from formula for 11" . Figure 10
compares the computer memory required for the stiffness matrix for the present and the
direct methods. where the direct method demands the storage for the half band matrix. The
fonner. which demands only 30 'Y;. as much memory as the latter. can save a lot ofcoll1puter
memory.

I.. CONCLUSION

In this paper a block-diagonalization analysis of isotropic symmetric plates is
presented. The geometric symmetry of the plate has been fully exploited by means of the
concept of "augmented" orbit. The present method achieves numerical efficiency and
demands less computer storage. Its numerical ctliciency has been further upgraded with the
usc of parallel computation. Although numerical examples arc presented only for square
plates (n = 4), its efficiency will be enhanced as n increases, due to the increase of the
number of square blocks, as has been demonstrated by Ikeda and M urota (1991).

Acklluwledgemellcs-The authors arc grateful to the referees for constructive comments. The authors thank Dr
Kazuo Murota for his valuable comments on group theory and block-diagonalization.

REFERENCES

Bossavit. A. (llJX6). Symmetry. groups. and boundary value prubkms-a progressive Introduction to non­
commutative harmonic analysis of partial differential equations in domain wllh geometric symmetry. Comp.

Mec". API'I. Jlc'c". E".'I".'I56. 167215.
Dinkevich. S. (19X-I). Th<.: spe<.:tral Ill<.:thod of calculation of symm<.:trIc structures of linit<.: size. Tram. C,," Soc'.

Mec". Ent/Ilt/K(4). IX5 194.
Dinkevich. S. (19X6). The fast method ofhlock elimination for the solution oflarg<.: regular Ill<.:chanical structures.

Tralls. ClIlI. S"c . .\leck 1:'I'.'IIIt/ 10(2).91 9X.
Dinkevich. S. (1991). Finite symmetric systems and their analysis.lnl 1. Solid, ScrucCurn 27(11)).1215 1253­
Fujii. II. and Yamaguti. M. (19XO). Structure of singularill<.:s and Its numerical realization in nonlincar elasticity.

J. Mach. I\roco UII/I". 2n.4'lX S')()

George, A. ;;nd Lill. J. (1'lXI). COIIIl'IIcer SOIIlI/orl "I' 1.1Ir.'/t' Sl'lInt' ('os/Iin' Dd/lllct' SI'SI('IIl.'. Prcntice-Ilall.

En..:lewood Cliffs. NJ.
Goluhitsky. M. and Schadl"<.:r. D. G. (1'lX5). SIIIt/lIll1r//lt's 1I11d Groups ill /I'/lIrcalilin Tlll'o,.. Vol. I Spring<.:r.

Berlin.
Healc:y. T. J. (llJXX). :\ group thcl1rctic appmach to computati'''lal olrurcation prohlc:ms with syll1l11<.:lry COllif'.

Mt'c". ,.11'1'1. Mt'ck [;'111/11</67,257 2%.
Healcv. T. J. and Treacv. J. A. (19lJl). E,act olnck diagon;I1ization or Iarg<.: <.:tg<.:nvalue prl1okl11s r,'r structures

with syml11<.:try llIl. / Nlllller..\It'ch. EllcI1'" 67. 2:'7 2')(,.



Blcx:k-diagonalization analysis of symmetric plates 2793

Ikeda. K. and Murota. K. (1991). Bifurcation analysis of symmetric structures using block-diagonalization. Camp.
Jteth. Appl. Mech. Engng 86(2).215-243.

Ikeda. K.• Murota. K. and Fujii. H. (1991). Bifurcation hierarchy of symmetric structures. Int. J. Solids Structures
27(12).1551-1573.

Murota. K. and Ikeda. K. (1991). Computational use of group theory in bifurcation analysis of symmetric
structures. SIAM J. Sci. Stat. Comput. 12(2).273-297.

Serre. l.·P. (1977). Linear Representations of Finite Groups. Springer. Berlin.
Ziokovic. G. (1989). Group Theory and G·t·ector Spaces in Structural Analysis. John Wiley and Sons. New York.


