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Abstract—This paper presents a block-diagonalization method to solve stiffness equations of iso-
tropic symmetric plates. By means of a suitable “local” coordinate transformation, chosen bused
on group theory. the stiffness matrix is decomposed into a block-diagonal form. The stiffness
cquation in the local coordinate is solved block by block, thus realizing numerical efficiency and
greatly reducing the requisite amount of computer memory. The efficiency hus been further upgraded
with the aid of the concept of augmented orbit. This method is applied to a square 1sotropic plate
subject to “asymmetric” loads to show its uscfulness.

1. INTRODUCTION

The group-theorctic method has emerged as a systematic means to exploit geometric
symmetry. Zlokovic (1989) has applicd it to symmetric structures subjected to asym-
metric loads. Bossavit (1986) exploited the symmetry for domains of partial differential
cquations, Healey (1988) employed it in obtaining cquilibrium paths of bifurcation buckling
problem of structures with regular-polygonal symmetry ; it was also used for large cigen-
value problems for symmetric structures in Healey and Treacy (1991). Dinkevich (1984,
1991) offered a series of complete studies on block diagonalization, Murota and Tkeda
(1991} and Ikeda and Murota (1991) used it for bifurcation-trucing analysis of structures
with regular-polygonal symmetry, with an emphasis on a dual view point of group symmetry
and sparsity.

All these group-theoretic studies are based on a mathematical principle—isotypic
decomposition—that the solution space for symmetric structures is to be partitioned into
a series of orthogonal subspaces [see, e.g. Serre (1977) and Fujii and Yamaguti (1980)].
This principle guarantees the existence of a4 transformation matrix # that can put elastic
stiffness matrix K of symmetric structures into a block-diagonal form £, that is,

K, 0

R=HKH = : ‘ (1

Since block-diagonal matrices thus derived are smalier in size compared with the original
matrix, this method can save computer memory. At the same time, the cost for swecping
out the matrix is greatly reduced, at the expense of the increase in the cost for matrix
multiplication in eqn (I). A procedure to efficiently perform this matrix multiplication
compatibly with the matrix finite element method must be developed to put the method
fully into practical use.

A typical procedure to reduce this multiplication cost is to exploit the geometric
symmetry. For this purpose Bosavit (1986) presented the concept of the “symmetry cell”;
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Y

Fig. 1. Geometric symmetry of a square plate.

Dinkevich (1991) employed the “fundamental primitive™ ; and Murota and Tkeda (1991)
used the “orbit™ for three-dimensional (truss) structures. The objective of this paper is to
augment the techniques to further and fully exploit geometric symmetry. For this purpose.
the concept of “augmented ™ orbitis introduced : the formation of A and the multiplication
of eqn (1) are performed systematically to enhance numerical efficiency. The present method
is applied to small-displacement analysis of isotropic symmetric plates.

2 THEORY

In this section the group-theoretic method tor the block diagonalization of the clastic
stiftness matrix of regular-polygonal (n-gonal) plates 1s presented, as a recapitulation off
previous papers, such as Dinkevich (1991) and Murota and Tkeda (1991).

The geometric symmetry of a regular n-gonal plate in the X Y-plane can be fabeled by
the dihedral groupt

D, = (Pt lk =0, n—1], (2)

ol degree i, where the braces {-} denote the elements of the relevant group ; the clement s
stands for the reflection with respect to the XZ-plane, and r* (k= 0,...,n—1) for the
counter-clockwise rotations around the Z-axis atan angle of 2nk/n radians ; and the multiple
denotes that the transformations are performed from the right to the left in sequence.

Fora square plate (n = 4), forexample, r, (k = 0, 1, 2, 3) express the counter-clockwise
rotations of kr/2 radians around the Z-axis; and s/ (k = 0, I, 2, 3) express the reflections
with respect to vertical planes intersecting the X'Y-plane in the X-, S-, Y- and T-axes.
respectively (see Fig. 1).

In the application to the problems of structural engineering, we will extend the notion
of group symmetry to the symmetries of (1) material property, (2) plate thickness, (3)
finite element meshest, and (4) the boundary conditions, in addition to the geometric
configuration. In the remainder of this paper. a plate is called D,-invariant for short it it is
D,-invariant with respect to all those aspects.

The geometric configurations of the deformed state of a D,-invariant plate can be
systematically labeled and categorized by the subgroups of D, expressed as:

D= e s Ve =000 m =1

N

C, ="k =0.1,.... m—1},

where m divides n and D) = D,.. Subgroups D, denote reflection symmetric modes with
respect to m vertical planes: N/, with different j express the same symmetry with the same
number of reflection planes but stand for different geometric configurations. €, are rotation

+1n the Schoenllics notation this group is denoted as C,.. whereas D, means another group in which s represents
the half-rotation around the Y-axis.

 The importance of symmetry in finite-clement meshes in describing overall symmetry has been pointed out
by Fujii and Yamaguti (1980).
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symmetric modes with respect to m rotations of 2kn’'m radians (k =0,.... m—1;C, s
the asymmetric mode.

Remark

For a D -invariant square plate in Fig. I, D, corresponds to a rectangular deformation
mode and D3 to a diamond-shaped one. Such a difference is attributable to the difference
in the physical meaning of the reflection planes. Likewise D;f and D~ ' (k= 1..... n;i2m)
denote physically different modes for n/m even (cf. lkeda et al.. 1991). The symbol D;,.
accordingly. is used to identify physically different modes. although it is customary to use
D, to represent D,,.

Let us denote a system of discretized stiffness equations of a plate by

F(fu) =f—Ku=0. 3

where [ is a loading pattern vector: u denotes a nodal displacement vector ; K is an elastic
stiffness matrix. The symmetry of F can be represented by the condition of equivariance
with respect to D,

T(g)F(f.u) = F(T(g)f. T(g)u), torallgeD,. (4)

where 7'(g) 1s a unitary matrix expressing the transformation associated with an element
g of D,. Then it is casy to show the commutability of K and T(g)

T(g)K = KT(g), forallgeD,. (5)

The condition (4) of cquivariance indicates that the transformation T'( g) on the independent
variables Fand u will result in rearranging the set of equations F through the same trans-
formation T'(g). Equation (3) for & D,-invariant plate usually enjoys D,-equivariance so
that onc needs not to prove it by showing eqn (4) or (3) [to be precise, the equivariance
cun be assessed by showing the symmetry luw by Dinkevich (1991)).

Symmetric systems have the characteristic that the space of the solution u of the
equilibrium equation (3) is to be decomposed into a series of mutually orthogonal subspaces
by so-called isotypic (standurd) decomposition [see, e.g. Serre (1977)]. For a D,-invariant
plate, or a D,-equivariant system (3) to be more precise, this decomposition guarantees the
existence of a transformation matrix [see lkeda and Murota (1991) and Murota and lkeda
(1991)}:

Ho= (Y HY HY L H 1, (6)

which is independent of particulur points and puts the stiffness matrix K into a block-
diagonal form A':

K= H"KH =diag[R',... K** R R R, R4R)

k\l O

- - : )

~

where
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K* = (H"'KH*. u=sl..... sR.:dl,.... dR,: (8)

R =4 R, =nl-1 forneven,
R =2 Ry=(n-1)2 fornodd
Here. ()" denotes the transposet ; R, is equal to the number of square diagonal blocks K
(j=1..... R,) that are not repeated. and Ry to the number of K (j = 1...., Ry) that are
repeated twice. In group theory R, denotes the number of one-dimensional irreducible
representations. and R, that of two-dimensional ones. For brevity we often refer to a
submatrix of eqn (6) as H*. where p = s/, djordj—.
Each trreducible representation u of D, i1s defined as

()= lgeD,|Tg) =1

where T s the irreducible representation matrix for u. Based on Murota and Ikeda (1991),
we have

:(d/) = C‘gcd(/./n' / =1.... Rd' (9)

where ged(/. ) is the greatest common divisor of jand n,

We can claborately choose #Y 1o be symmetric with respect to Dy, irrespective of

the parity of a'ged(jon), and 1Y to DRGSR for nfged(j.n) even. Such a choice,

combined with the concept of “augmented orbit™ in Scction 4.2, will achieve numerical
elficiency.
Then consider a local coordinate transtormation

K- R\l
u=Hw=Y H'w' =Y H'w/+ Y (HY'WY+HY W), (10)

I =1 =1

with a local coordinate variable

an
r

w = [(wsl)f‘ o (W‘R‘)r, (wdl)l" (wdl f)l“ e (W )l" (wdev)T]T.

By meins of the transtormation (10), the stiffness equation (3) can be partitioned into a
number of distinct equations for each block

(H)'I=K'w”, j=1..R; (n
(' = KYwh (MY ) =K%Y j=1,..., Ry (12

Substitution of the solution w* of eqns (1) and (12) into eqn (10) leads to the solution u
of the original equution

u=7Y HYK"Y "(H'S (13)

i

as a superposition of the solutions for cach block.

+ It is suflice to use the transpose ()7 here, while in a more general context the Hermitian conjugate () "is used.
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3. FORMULATION OF TRANSFORMATION MATRIX

In this section we present a systematic method to formulate a transformation matix H
fora D,-invanant plate based on the concept of orbit [see Golubitsky and Schaetfer (1985)].

A set of nodal points for a D,-invanant plate as a whole is also D,-invariant. This
whole set of nodal points can be partitioned into a series of D,-invariant subsets of points,
which are called “orbits” in mathematical terminology. Elements # and s/ (k = 0.....n— 1)
of D, transform a nodal point x to points #x and (s7)x. respectively, where x expresses its
location vector. [n this manner one can define an orbit consisting of a set of points:

{r'x and (sr')x|k=0..... n—1",

which can be transformed to one another and remain unchanged as a whole by the geometric
transformation by the elements of D,. As shown in Fig. 2. the following four types of orbits
exist: (1) Center type, (2) n-gon type I, (3) n-gon type [I. and (4) 2n-gon type. [n particular,
for a square plate (n = 4). the n-gon type is called the square one. and the 2n-gon type the
octagonal one. Figure 3 displays an example of orbital decomposition of a meshed square
plate. which is made up of one center type, two square type [, two square type II, and one
octagonal type. Just as the finite element method expresses a structure as an assemblage of
elements. a meshed plate is expressed as an assemblage of orbits.

The basic strategy which we will employ is to formulate cach column vector of H orbit
by orbit. Such a definition not only makes its formulation simpler but also makes the
resulting A matrix sparser. since only the components associated with the orbit are nonzero.
The orbital decomposition presented in this paper is numerically more eflicient than that
by Zlokovi¢ (1989) in that the former decomposes a plate into a greater number of orbits
and makes # sparser.

For n =4, for example, we can choose the deformation modes shown in Fig. 4 tor
cach orbit corresponding to cach p {see Murota and Tkeda (1991) or Tkeda and Murota
(1991)]. Here the arrows denote the direction of the deformation vector; the solid lines
express deformed states and the dashed lines the initial state. Some of these deformation
modes enjoy the antisymmetry with respect to some rotations and reflections. For example,
the modes for s2 have no reflection symmetries. However, they are antisymmetric with
respect to the four reflections s/ (k = 0, 1, 2, 3) in that they reverse the signs of deformations
but retain their magnitudes unchanged. Further the modes for d1 — have been elaborately
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Fig. 2. Orbital decomposition of nodal points. (a) # = 3; (b} # = 4. Dotted-dash lines : planes of
reflection symmetry.
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Center type

Square type |

Square type I

Octagonal type

Fig. 3. Example of orbital decomposition of a mueshed square plate.

chosen so as to enjoy invariance with respect 1o sr° and also antisymmetry with respect to
s and r% Such antisymmetry will be exploited in the tollowing section to enhance the

numerical efliciency of the present method.

4. EFFICIENT COMPUTATION OF LOCAL STIFFNESS MATRIX

In this mcthod we have greatly reduced the cost for sweeping out by replacing the
analysis for K in eqn (3) by that of K of eqn (13) with smaller sizes, at the expense of the

Cen-
ter

Square
type !

Square
type 11

Octagonal

Fig. 4. Deformation modes for each orbit (n = 4). Dotted-dash fines @ planes of reflection symmetry.
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additional cost for the matrix multiplication in eqn (8) to compute K*. In order to further
enhance its efficiency this additional cost is reduced here through the procedures listed
below. details of which will be given in the following subsections:

(1) Because only the components w* with nonzero (#*)'f will contribute to the final
solution of eqn (13). only K* with nonzero (H*)"f need to be computed and sweeped out.

(2) Equation (8) is used to compute K*. instead of eqn (7). so as to reduce the size of
matrices and in turn to reduce the multiplication cost.

(3) The matrix multiplication of eqn (8) is to be performed for each element and then
to be superposed for the whole plate so as to reduce the size of matrices.

(4) The matrix multiplication for all elements needs not to be performed if the geo-
metric symmetry (D,-invariance) of the plate is to be implemented.

(3) For twice repeated matrices KY in eqn (7). only one of them should be computed
and be sweeped out.

(6) Because K* are symmetric matrices. only their upper triangular parts are to be
computed.

4.1. Transformation for each element

The column of H* is associated with the variable w*, and its row with global variable
u. Remembering that the components of w* correspond to the deformation modes of orbits,
one can decompose w* into orbital components:

wh= (W)™, (wa )T (14)

where Vg = Ng(pt) is the number of orbits ; and w is the ith orbit (i = 1, ..., Ny). Likewise
u is decomposed into nodal components:

u= ((ul)rv-"*(u‘\'l.)r)rt (IS)

where Ny is the number of nodal points: and u, is the ith point (i = 1, ..., Ny).
To be consistent with these decomposed variables of eqns (14) and (15), the submatrix
H*, the block-diagonal stiffness matrices £, and the stiffness matrix K are partitioned into
block matrices as below.,
H' = (HEli= 1, . ,Np: j=1,....N,)

HYy o HY

H fiwl . H f(/'.-.x'..
K= (K10 j o N,
K= (K,lt.j=1,....Np).
Let the plate be made up of N, elements, and the eth clement (¢ = 1,..., N.) consists

of A nodal points with node numbers (p,|i = 1...., M), and denote by

(g.=q(p)li=1,....M)

the orbit number of each point. Wc partition the eth element stiffness matrix, say
K (e=1,...,N,), into block matrices as

K=(K;,lij=1....M).

Then the multiplication of eqn (8) for the whole structure can be replaced by the
assemblage of the multiplications for elements

SAS 29:22-G
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Center type Square type [ Square tvpe ] Octagonal type
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Fig. S. D,-invariant orbits among elements (n = 3. Dotted-dash lines : planes of reflection symmetry.

13

=<

A
=y R, 6, 0. (16)
e=1

T

\x<[~/]

where J,, and 0, denote Kronecker's delta: and

Iy

I\Li“// - (H‘ ") Aﬂk/’ 4/" (I7)

It is suffice to compute K with i = jin eqn (16), since K* is a symmetric matrix. Because
the size of matrices in the right-hand side of eqn (17) is much smaller than that in egn (8),
the cost for matrix multiplication has been greatly reduced.

4.2, Augmented orbit among clements

The geometric symmetry of a D,-invariant plate s exploited here by means of the
concept of “augmented™ orbit among elements. To be consistent with the four types of
orbits among “points™, the sct of clements of such a plate can be decomposed with the use
of four types of D -invariant orbits among clements shown in Fig. S for n = 4: (1) center
type, (2) n-gon (square) type 1, (3) n-gon (square) type I, and (4) 2n-gon (octagonal) type.
[t is to be noted that the definition of the orbit varics with the group under which the orbit
is invariant. FFor the subgroups ¢ = 2(p) of D, the four types of D,-invariant orbits are
decomposed into different kinds of orbits. An example for ¢ = D, is shown in Fig. 6(a),
where the elements ascribed with the same symbol belong to the same orbit.

Say two clements ¢ and ¢* belong to the same orbit among “clements™ under the
action of a subgroup G, and p and p¥ (respectively, p, and p*) are the points on each of
these two celements, respectively, belonging to the saume orbit among “'points’™ under the
same group action (. Then there exists an orthogonal transformation 7(g) for an element
¢ of the subgroup G such that

Center type Square type | Squars type [I Qctagonal type

® | © 0 nlin

j D o]

_._._E} ..... ———. I_ ...... __.,ir._.@_ _[:__. it
(o

EZI L?_E

(a)
| ' nfin
| o= rfj oo
_____________________ - _E]_'T'_ SO G,
| 6 [
| | @ (¢] 4] | (&l
(b}

Fig. 6. (a) D -invariunt orbits among elements : (h) N -invanant augmented orbits among elements.
Dotted-dash lines: planes of reflection symmetry mlld lines: plunes of reflection antisymmetry.
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I(gH,, =H.,.. n=korl geCG. (18)
K, =T(9'K;,T(9). g€G, (19)

where K;},,; is the submatrix for the element stiffness matrix for the element e* associated
with the two points p¥and p?
With the use of eqns (18) and (19), the component K¢

o, 0f eqn (16) can be expressed as:

k;:q, = (H‘;I‘API()TK;U'I H::PI
= (H3,) " T(9) T(9)K;, (P T(9)H:,

P
= [T(9)H,, )" [T(9T K}, (O[T (P H;,)
= (H% .)TKe' CHE

9P piri N dp;

= K, (20)

by [T(g)]" = [T(¢)]~'. Equation (20) indicates that the elements belonging to the same
orbit under the action of G have the same tributary clement stiffness for G.

Here, we extend the concept of orbit. Remember that the base vectors of Fig. 4 are
selected in such a manner that they often enjoy antisymmetry with respect to the group
action, that is,

T(g)Hy, = —H n==k or I geG. n

Uyl Unly?

Then it is straight forward to show that eqn (20) holds for this case as well. We call a set
of points which satisfy either eqgn (I18) or (21) an “augmented orbit™ that is invariant up to
the sign. Since the elements belonging to the sume augmented orbit have the same tributary
stiffness, the stiffness for one representative clement among these elements should be
evaluated and then multiplied by the number of clements among the augmented orbit to
arrive at the stiffness for the whole orbit.

For example, for n = 4, Table | lists this number for each orbit ; and Fig. 6(b) displays
the decomposition of the four types of D -invariant orbits into D,-invariant augmented
orbits. As can be seen, these augmented orbits consist of a greater number of elements than
do customary orbits. The use of the augmented orbits will enhance the numerical efficiency
of the present method.

5. EXAMPLES
5.1. One-element square plate
As a simple example, we consider a D -invariant square plate with a uniform thickness
1, and of isotropic material property with constant Young's modulus £ and Poisson’s ratio v.

Table I. Number of clements belonging to augmented
orbit among elements for n = 4

I

Type of orbit sl,s2. 53,54 dl di -
Center l | 1
Square type | 4 4 2
Square type 1 4 2 4
Octagonal 8 4 4
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Y
2 3
X
1 4

Fig. 7. An isotropic, four-node. square plate element.

We simulate this plate by a four-node finite element with eight degrees of freedom shown
in Fig. 7.

By eqn (3) an element stiffness matrix A of the D -invariant plate must commute with
the transformation matrices T(#) and T{(s7) (k = 0. 1, 2, 3) for all elements of D,. For

example, T(r) and T(s) read:

T(r) =

.

-1

This condition (3) restricts the form of A as follows:

.
! .
C, C, Symmetric
c, —-C, C,
K = < € —C < 22
C: _C(, C5 "C‘\ C‘|
'—Ch C: C; C7 CJ Cl
CS C] C'_v C(y C’ —C] Cl
. -¢ ¢ ¢ G GG =G G J

where (C;li=I..... 7) arc constants.

For example. an isotropic element stiffness matrix for a Serendipity square clement
with four nodes is of the form of eqn (22) with
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E:

“=naom©

i=1,...,7,

where
¢ =23-v), c:=—-(3-v), Cs=%(1—3"),
ci=ce=314v), cs=—03+v), c;=2v.

This element stiffness matrix, therefore, commutes with T(g) and remains invariant under

I(g).

The transformation matrix H* (u = s, s2. s3, s4. dl, or d1 —) of eqn (6) for this
element, made up of an orbit of square type I, can be given by the deformation patterns of
this orbit shown in Fig. 4, that is.

(—/24 ] [ V) (— /24 (—V/2a)
—J2/4 - J2/4 J2/4 -J2/4
~-J2/4 ~-J2/4 ~-J2/4 J2/4
ﬁ/‘* . OHY = R COHY = —‘[2,/4 . OHY = —‘/73/4 ,
J2/4 -J/2/4 J2/4 J2/4

J2/4 J2/4 -J2/4 J2/4
V- 2/4 J2/4 \/;/4 -J2/4
\—\/2/4J L \/2/4J L \/2/4) L \/2/4/

H =

(12 0 ) 0 —1/2)

0 —12 12 0
20 0 12

oo |0 2| e _ |20
2 o | 0 -1

0 —172 12 0
12 0 0 1/2
Lo 1/2J 12 0 J

Then K* can be put into a block-diagonal form with the square blocks of eqn (8):
K= H'KH = diag [R*', R, R®, B+, R*, RY),
with

fio B pa_o guo B ge_EQ-3

T =y ’ L+’ T2(1=vy
R EO=0/(0 0
T6(1—-vH\0 1)

The three zero diagonals of this matrix are associated with the rigid body displacements of
the plate.
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} I
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*Q}’

|8
(h) 11

Fig. 8. Deformation modes of a square plate. (a) Deformation in local decomposed coordinites
(b) Deformation in global coordinates.

5.2, Square plate with N x N meshes

We consider a D -invanant square platet of a uniform thickness and isotropic material
property with V x & uniform meshes supported at the four corners with point bearing. This
plate is subject to an asymmetric load, for which all external force vectors (H*)'f arc all
nonzero. The element stiffness matrix is given by the Serendipity square element with four
nodes. The stifTness matrix K transformed by eqn (7) is partitioned into six diagonal blocks.

For ¥ = 6 the deformation modes for the solutions H*w* of eqn (13) for blocks are
shown in Fig. 8(a), where the size of axis denotes the scale for each detformation mode.
Then these modes are superposed to arrive at the final solution u shown in Fig. 8(b). which
is identical with that obtained directly from eqn (3).

In order to demonstrate the numerical efficiency of the present method, we compare
it with the direct (conventional) method [similar comparison was done by Dinkevich
(1991)]. The revised Cholesky method? is used to sweep out stiffness matrices. The cost to
sweep out a banded matrix of size M is given by

BY(M—-B)+B'/6 (23)

in terms of the number of arithmetic operations, where B is a half band width. This cost
for the direct method is evaluated to

t The finite element solution for this plate strongly depends on mesh and would diverge for infinitesimally smali
mesh widths. . -

* Although the Cholesky method is employed here. it does not necessarily mean that this method is superior to
many other alternatives, such as the one-way dissection method by George and Liu (1981) and the block
climination method by Dinkevich (1986).
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Table 2. Number of the orbits among elements for the square plate

Type of orbit
Parity of & Center  Square type [ Square type 11 Octagonal
Odd 1 (N=1).2 (N=1);2 (N=1)(N=D8
Even 0 N2 0 (N1=2V) 8

Table 3. Computing cost for matrix multiplication (17) for each element

Type of orbit

u Center  Square type |  Square type I Octagonal
s1.s2,s3. 54 72 80 or 126 76 0r 168 110, 138, 168 or 200
dl 152 168 or 300 184 0r 400  270. 348, 434 or 328
16N+ 127N, (24)

and for the present method to
6N+ 14N, (25)

Matrix multiplication cost for the present method can be evaluated as below, A set of
N x N elements of the plate is decomposed into four types of orbits among ¢lements. With
the use of the number of each orbit listed in Table 2 and the cost for matrix multiplication
(17) for each element in Table 3, the cost for the whole plate is evaluated to 232N°, which
is far smaller in order than the cost (24) or (25) for sweep out. The overall cost by the
present method, which is the sum of eqn (25) and 232N, is given by

ON'+ 14N +232N°, (26)

which is approximately 3/8 of the cost (24) for the direct method for large N.

Figure 9 depicts for various numbers of division N the numerical cfficiency of the
present method relative to the direct method. For the present method the procedures
presented in the previous section have all been employed to enhance its numerical efficiency.
The solid lines denote the computing time by the present method with and without parallel
computation ; the dashed one expresses that by the direct method ; and the computing time
is normalized regarding that of the direct method for N = 9. The computing time for N =9
is reduced for the present method more than 20% compared with the direct method. This
reduction, however, is smaller than an analytically predicted reduction of 60% by eqns (24)
and (26) for N = 9. Such smaller reduction is attributable to additional cost for the block-
diagonalization analysis in the computer program. Nonetheless, such additional cost will
be of the order of (N?), and is expected to be reduced for lurge N. With the aid of five

1.0 ] ,
’
] 7
g § Direct method /
= ‘-_—.‘ 4
g 1 /
3 Present method
E | Present method
g 0.5
; (parallel)
N 4
5
g 4
3
2 J
0
T T T T T T T

Number of division n

Fig. 9. Numerical efficiency of the present method relative to the direct one.
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Fig. 10. Requisite computer storage of the present method relative to the direct one

parallel units the computing time has been further reduced by more than 65%. The time
will be further reduced when the computation for cach block is performed by parallel
machines with many parallel units.

A more important feature of the present method 1s its lower demand on the computer
memory. [f the computation for cach block is performed in sequence, for block matrices
K* only the storage for onc with the greatest size needs to be reserved. Further, the storage
for H" can be almost nullitied by directly computing trom formula tor /. Figure 10
compares the computer memory required for the stiffness matrix for the present and the
dircct methods, where the direct method demands the storage tor the half band matrix. The
former, which demands only 30% as much memory as the latter, can save a lot of computer
memory.

6. CONCLUSION

In this paper a block-diagonalization analysis of isotropic symmetric plates is
presented. The geometric symmetry of the plate has been fully exploited by means of the
concept of “augmented” orbit. The present method achieves numerical efficiency and
demands less computer storage. [ts numerical efliciency has been further upgraded with the
use of parallel computation. Although numerical examples are presented only for square
plates (n = 4), its efficiency will be enhanced as n increases, due to the increase of the
number of square blocks, as has been demonstrated by [keda and Murota (1991).
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